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The principle of affine symmetry is applied here to the nested fullerene cages

(carbon onions) that arise in the context of carbon chemistry. Previous work on

affine extensions of the icosahedral group has revealed a new organizational

principle in virus structure and assembly. This group-theoretic framework is

adapted here to the physical requirements dictated by carbon chemistry, and it is

shown that mathematical models for carbon onions can be derived within this

affine symmetry approach. This suggests the applicability of affine symmetry in a

wider context in nature, as well as offering a novel perspective on the geometric

principles underpinning carbon chemistry.

1. Introduction

Symmetry – and in particular rotation and reflection symmetry

– features very prominently in the natural world, for instance

in crystals and viruses. Often these symmetric structures

correspond to minimum-energy configurations, or are driven

by other principles such as that of genetic economy in virology

(Crick & Watson, 1956). Whilst crystalline arrangements and

their crystallographic reflection symmetries are undoubtedly

very important, the largest reflection groups in two and three

dimensions are actually non-crystallographic: the symmetries

of the regular polygons in two dimensions I2ðnÞ, and the

symmetry group of the icosahedron in three dimensions

H3 ¼ Ih. For example, in many cases the proteins in viral

capsids are organized according to (rotational) icosahedral

symmetry I. Thus symmetry is an important principle for virus

structure, assembly and dynamics.

Icosahedral arrangements of carbon atoms have also been

observed since the 1980s, collectively known as fullerenes

(Ugarte, 1992, 1995; Hawkins et al., 1991). The most prominent

icosahedral fullerene is the buckyball C60 (Kroto et al., 1985),

which in mathematical nomenclature is called a truncated

icosahedron and has the shape of a football. Larger such

fullerene configurations also exist, and of particular interest

here are nested arrangements of fullerene cages, called carbon

onions (Iijima, 1980). All these cages share the property that

carbon atoms each have three bonds to other carbon atoms of

roughly the same length and angle, i.e. fullerene cages are

three-connected.

A symmetry point group describes a structure at a given

radial distance from the origin, such as a single fullerene

cage. Via an affine extension, the symmetry point group is

augmented so that it can describe structures at different radial

levels collectively (Dechant et al., 2012, 2013; Dechant, 2014).

It therefore lends itself to the modelling of carbon onions

(Patera & Twarock, 2002; Twarock, 2002). Recently we

introduced new affine extensions for the icosahedral group

(Twarock, 2006; Keef & Twarock, 2009) and demonstrated

that these can be used to model virus structure at different

radial levels (Keef et al., 2013; Wardman, 2012). In particular,

this work revealed a previously unappreciated molecular

scaling principle in virology, relating the structure of the viral

capsid of Pariacoto virus to that of its packaged genome. This

suggests that the overall organization of such viruses follows

an affine version of the icosahedral group, and implications of

this discovery for virus dynamics and assembly have been

discussed based on this new principle (Indelicato et al., 2012).

We will investigate here whether these new mathematical

structures can also model carbon onions. In particular, we

examine the possibility that the different shells of a carbon

onion can collectively be modelled via such an affine

symmetry. We extend and adapt our earlier work on affine

symmetry in the context of viruses to the physical situation

dictated by the constraints of carbon chemistry. That is, we

investigate affine extensions of icosahedral symmetry that are

compatible with three-connectedness of the carbon atoms in

fullerenes.

This paper is organized as follows. x2 introduces and illus-

trates the principle of affine symmetry, how it is applied to

viruses and how we adapt it here to the context of carbon

chemistry. x3 demonstrates how the experimentally observed

carbon onions follow straightforwardly from our affine sym-

metry framework. We conclude in x4.

2. The symmetry paradigm

The principle of affinization, i.e. the extension of a finite

symmetry group by the addition of a non-compact generator,

is commonly used in the context of crystallographic groups

to generate space groups. It has been introduced in a non-
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crystallographic setting for the first time in Patera & Twarock

(2002). In particular, in this reference the reflection groups H3

and H4, which are the only reflection groups containing

icosahedral symmetry as a subgroup, have been extended by

an affine reflection, and it has been shown that in combination

with generators of the finite groups the affine reflections act as

translations. Subsequently, affinizations of icosahedral sym-

metry via translation operators have been classified (Keef &

Twarock, 2009; Keef et al., 2013; Dechant et al., 2012, 2013;

Wardman, 2012). These contain the affinizations derived

previously, but in addition provide a much wider spectrum of

extended group structures. We illustrate the construction

principle geometrically here for the two-dimensional example

of the rotational symmetry group C5 of a regular pentagon

(see Fig. 1).

Addition of the translation operator T (here taken to be of

the same length as the golden ratio � times the radius of the

circle into which the pentagon is inscribed) makes the group

non-compact by creating a displaced version of the original

pentagon. The action of the symmetry group C5 of the

pentagon generates additional copies in such a way that, after

removal of all edges, a point array is obtained that has the

same rotational symmetries as the original pentagon. Since

every point in the array is related to every other via applica-

tion of generators of the extended group, all points can be

generated from a single point via the action of the extended

group. They are hence collectively encoded by the group

structure.

The points in the array correspond to words in the

generators of the affine extended group. Thus, if points are

located in more than one of the translated and rotated copies

of the original pentagon, then these points, called coinciding

points, correspond to non-trivial relations between group

elements, and the extended group is hence not the free group.

The point set obtained in Fig. 1 with the translation of length

� ¼ 1
2 ð1þ

ffiffiffi

5
p
Þ has cardinality 25, as opposed to 30, which

would be the value in the generic case. Translations giving

rise to such coinciding points are hence distinguished from a

group-theoretical point of view.

Note that the point array contains a composition of a

pentagon and a decagon of different scaling, both centred on

the origin. The affine group determines their relative sizes (or

radial levels), and hence introduces radial information in

addition to that encoded by the original group structure.

Affine symmetry therefore allows one to constrain the overall

geometry of a multishell structure from just part of the blue-

print.

Having illustrated our rationale in the two-dimensional

setting, we now consider the icosahedral group, which is the

largest rotational symmetry group in three dimensions. The

icosahedral group I consists of 60 rotations, and has 15 axes of

twofold rotational symmetry, ten axes of threefold symmetry

and six axes of fivefold symmetry. In analogy to the two-

dimensional example above, affine extensions have been

constructed in Keef & Twarock (2009) via the introduction of

translation operators. In this construction, the icosahedron

(whose 12 vertices lie on the axes of fivefold symmetry), the

dodecahedron (whose vertices are located on the threefold

axes) and the icosidodecahedron (whose vertices are posi-
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Figure 1
A planar example of affine symmetry: the action of an affine-extended
symmetry group on a pentagon. The translation operator T, in
combination with the rotational symmetry group C5, generates multiple
copies of the pentagon, with vertices corresponding to words in the
generators of the extended group. Owing to the action of C5, the vertices
form a C5-symmetric point array. Coinciding points, i.e. points located on
more than one pentagon, correspond to distinguished translations and
non-trivial group structures, which can be used to model natural
phenomena.

Figure 2
A novel scaling principle in the structure of Pariacoto virus. The point arrays derived from affine extensions of the icosahedral group constrain different
components of the overall viral geometry. In particular, they relate the RNA organization of the packaged genome with structural features in the outer
protein capsid, which were not previously thought to be related via symmetry.



tioned on the twofold axes) have been used as geometric

representations of icosahedral symmetry, and the directions

and lengths of the translation operators in the affine extension

have been derived with reference to these. The reason for this

choice of polyhedral shapes, called start configurations in Keef

& Twarock (2009), stems from the fact that they correspond to

the projections of the standard bases of the three Bravais-

lattice types with icosahedral symmetry in six dimensions: the

icosahedron obtained from a six-dimensional simple cubic

lattice, the dodecahedron from a six-dimensional body-

centred cubic lattice and the icosidodecahedron from a six-

dimensional face-centred cubic lattice. In particular, the use of

these shapes in the construction of the affine groups ensures

that the point arrays are subsets of the vertex sets of quasi-

lattices with icosahedral symmetry [see Keef et al. (2013) for a

two-dimensional example and Salthouse (2013) for a three-

dimensional one]. In particular, this implies that the affine-

extended non-crystallographic groups are by construction

related to aperiodic tilings, in analogy to the relation between

affine-extended crystallographic groups and lattices.

A full classification of the affine extensions of the icosa-

hedral group based on the three polyhedral start configura-

tions given by the icosahedron, dodecahedron and

icosidodecahedron has been provided in Keef & Twarock

(2009), and applications of these point arrays to viruses have

been discussed in Keef et al. (2013). In particular, since the

relative scalings between all the points in the array are fixed by

the extended group, there is only one global scaling factor that

maps all points collectively onto the biological system. For

example, in the case of Pariacoto virus discussed in Keef et al.

(2013) and shown in Fig. 2, the length scales are determined by

the structure of the genomic RNA such that array points map

into the minor grooves of the molecule. The fact that the

overall geometry is given by an orchestrated interplay

between the interior RNA structure and the outer protein

capsid structure is very surprising, and hints that the under-

lying symmetry is actually affine.

We revisit this classification here in the context of carbon

chemistry. In this case, length scales are determined by the

distances between carbon atoms, and only those point arrays

are relevant that contain outer shells corresponding to three-

coordinated cage structures. In Keef & Twarock (2009) and

Keef et al. (2013) only affine extensions of the chiral icosa-

hedral group I were considered, since viruses do not normally

possess inversion invariance. In Dechant et al. (2012, 2013) we

were working in a Coxeter-group framework and therefore

used the full icosahedral group H3 ¼ Ih. Since here we are

considering start configurations that are invariant under the

full Ih rather than just I, as well as extending along axes of

icosahedral symmetry (which are also invariant under the full

Ih), the resulting point arrays will also be invariant under the

full icosahedral group Ih.

For the dodecahedral start configuration, there are four

affine extensions that result in three-coordinated shells. These

are: a translation along a threefold axis (lengths �2 and 1=�2

yield the same overall structure) and along a fivefold axis

(length 1 and �), with 200, 80 and 120 atomic positions,

respectively (see Table 1). For the icosahedral start config-

uration, only a translation along a threefold axis of length 1

gives such a shell, which corresponds to the structure with 80

vertices already encountered in the dodecahedral case. For the

icosidodecahedral start configuration, none of the affine

extensions result in a three-coordinated shell. The corre-

sponding configurations are displayed in Fig. 3. Of these, only

the shell with 80 atomic positions has approximately uniform

angles between edges of the trivalent vertices, but deviates
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Table 1
The translations that generate affine extensions of icosahedral symmetry
resulting in three-connected shells for start configurations given by an
icosahedron of radius ð� þ 2Þ1=2, a dodecahedron of radius

ffiffiffi

3
p

and an
icosidodecahedron of radius �.

Polytope Direction Length Vertices

Dodecahedron 3 ��2 or �2 200
5 � 120
5 1 80

Icosahedron 3 � � 1 120
3 1 80

Figure 3
The allowed translations for an icosahedral, dodecahedral and icosidodecahedral start configuration that yield trivalent configurations with 80, 120 and
200 vertices, respectively. Owing to their non-uniform bonding structure, these configurations may not meet the constraints on bond angles and lengths
required in carbon chemistry.



from the structure published in Bodner et al. (2013) and the

known structures of the C80 fullerene isomers, suggesting that

this structure is not realized in nature.

3. Application to fullerenes – two families of carbon
onions

Carbon onions are nested fullerene cages formed typically

from three carbon cages of different size. Kustov et al. (2008)

have shown that from a group-theoretical point of view, Cn

with n ¼ 60z and n ¼ 60zþ 20, for z 2 N, are ‘allowable’

icosahedral fullerene structures. We therefore extend our

classification of affine extensions of the icosahedral group here

to include start configurations corresponding to the cases

n ¼ 60 and n ¼ 80 with a view to recover these carbon onions

in our affine-extension framework; note that the case of

n ¼ 20 corresponds to the dodecahedron discussed in the

previous section.

We start by applying the approach of affine extension to

the truncated icosahedron, the cage structure corresponding

to the fullerene C60. The most natural coordinates for the

truncated icosahedron include vertices of the form ð1; 0; 3�Þ,
and vertices are hence located on a sphere with radius

ð10þ 9�Þ1=2
’ 4:95. We obtain a total of 49 non-trivial affine

extensions. Among these, only three correspond to a three-

coordinated cage. The details of these translations are given in

Table 2 and the corresponding point-array configurations are

displayed in Fig. 4. In particular, a translation along a fivefold

axis of length 3 results in a point array whose outermost shell

has 240 three-connected vertices, positioned according to the

structure of the fullerene C240. Fig. 5 shows how the structure

of C240 differs from that of C60 by an extra hexagon between

the two pentagons, which are oriented vertex to vertex.
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Table 2
The translations that generate affine extensions of icosahedral symmetry
for the start configuration corresponding to the cage structure of the C60

fullerene and yield trivalent outer shells.

Direction Length Vertices

5 3 240
5 2� 240
5 3� 360

Figure 5
The carbon onion generated from C60: (a) C60, (b) C240 and (c) C540. Note that all three have pentagons that are oriented vertex-to-vertex. Each iteration
with the translation from the affine extension inserts an additional hexagon between the pentagons, thereby creating larger and larger shells.

Figure 4
The allowed translations for a start configuration corresponding to the structure of the C60 fullerene cage, yielding trivalent configurations with (a) 240,
(b) 240 and (c) 360 vertices, respectively. Apart from the first configuration (a) with 240 vertices, which is a good model for C240, these configurations are
perhaps again not uniform enough in terms of bond angles and lengths to be physical models.



Note that these point-array configurations correspond to

words in the generators of the extended groups in which the

translation operations occur precisely once. We therefore next

generate the point arrays corresponding to words with

precisely two occurrences of the translation operator. In

particular, if a further iteration step is carried out for the

translation that has generated the C240 cage (i.e. another

translation along a fivefold axis with a multiplier of 3), a

trivalent cage corresponding to the structure of C540 (shown in

Fig. 5c) is obtained. It has one more extra hexagon between

the pentagons as demonstrated in the figure. The fullerene

cages C60, C240 and C540 are hence described by the same affine

group, and the dimensions of all three shells are fixed relative

to each other by this group. Interestingly, these three shells are

known to occur collectively in nature in the form of a Russian-

doll-like organization called carbon onion; the nested carbon

onion arrangements of such fullerenes are hence orchestrated

by this affine symmetry group. Repeated application of this

same affine extension generates a family of nested shells C60–

C240–C540–. . ., which in addition contains models for C960,

C1500, C2160 and C2940 as well. This carbon onion is well known

experimentally (Ugarte, 1995) and follows the pattern Cn

where n is given by n ¼ 60z2 for z 2 N. We have shown here

that our affine symmetry approach describes different shells of

such a carbon onion within a single framework.

Next we start from the configuration C80 in a parametriza-

tion with radius 2
ffiffiffi

3
p
�, i.e. including vertices of the form

ð2�; 2�; 2�Þ. In contrast to the published isomers of lower

symmetry, this configuration is chosen to have full Ih

symmetry. This start configuration yields 76 non-trivial

affine extensions; however, only one of them [length 1
5 ð7þ �Þ

along an axis of fivefold symmetry] corresponds to a three-

connected outer shell. This shell consists of 180 vertices that

are positioned according to the structure of a C180 fullerene

cage (see Fig. 6b). As before, affine extension has inserted an

extra hexagon between two pentagons, however this time in an

edge-to-edge conformation. We again consider words in the

generators containing more than one copy of the translation

operator, i.e. we repeat the copy-and-translate process using

the same translation. This results in the successive insertion of

further hexagons edge-on between the edge-on pentagons

as shown in Fig. 6, thereby creating larger and larger shells

corresponding to the fullerenes C180, C320, C500, C720 etc. These

form the well known carbon onion C80–C180–C320–. . . that

follows a similar pattern Cn, where this time n is given by

n ¼ 20ðzþ 1Þ2 for z 2 N (Terrones et al., 2002).

We have thus found carbon onions based on the first two

allowed icosahedral fullerene structures identified in Kustov

et al. (2008) within our affine-extension framework, as

summarized in Fig. 7. The next larger cage in their analysis has

cardinality 120 and we therefore consider this case next.

However, a similar analysis as above shows that there are no

other three-connected cages arising via affine extension. We

therefore terminate our analysis at this point.

4. Discussion and conclusion

We have shown that affine icosahedral symmetry is ubiquitous

in nature. Apart from orchestrating the distribution of mate-

rial at different radial levels in a virus, it models nested carbon

cage structures such as fullerenes. We have derived here the

two simplest carbon onions starting with C60 and C80 in a

simple affine-extension framework in which the affine

symmetry relates all shells to each other simultaneously.

Carbon onions at higher orders such as ones starting at C120

and C140, which are the next allowed structures in the analysis

of Kustov et al. (2008), are known, but are in fact chiral

(Terrones et al., 2002). Terrones et al. (2002) further mention
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Figure 6
The carbon onion generated from C80: (a) C80, (b) C180 and (c) C320. All three have pentagons that are oriented edge-to-edge, with each affine translation
step inserting an extra hexagon between the pentagons.

Figure 7
The two carbon onions generated from C60 and C80, parametrized such
that vertices are positioned at radial levels ð10þ 9�Þ1=2 and 2

ffiffiffi

3
p
�,

respectively. These are generated via translations along a fivefold axis
with length 3 in the former, and 1

5 ð� þ 7Þ in the latter case.



another chiral carbon onion starting with C80, with C240 as the

next shell. In this paper, we have considered extensions along

the icosahedral symmetry axes. These extensions cannot yield

chiral configurations; however, we have shown in Dechant et al.

(2012) that chiral point arrays can be obtained by extending

along a direction other than an axis of symmetry. We will

therefore consider more general icosahedral configurations

and translations in future work.

We note that a description of fullerene cages in terms of

orbitals has been pioneered by Kustov et al. (Kustov, 2008a,b,

2009, 2012), and has provided a classification of fullerene

architectures.

We also note that an insertion of a hexagon between two

pentagons in vertex-to-vertex orientation such that the

resulting pentagons change to edge-on conformation (and vice

versa) is possible with the introduction of twist translations.

Twist translations are analogues to glide reflections in higher

dimensions, and are composites of translations along axes of

n-fold rotational symmetry and rotations around these axes.

Details of affinizations via twist translations are introduced

and discussed further in Wardman (2012). This work implies

that the C60 and C80 configurations, which have been used here

as start configurations, can indeed be generated from the

icosahedral, dodecahedral and icosidodecahedral start

configurations used in virus-related work via twist translations.

This again implies a link with the three Bravais-lattice types in

six dimensions, because – as mentioned in x1 – these three start

configuations can be obtained from the bases of these lattices

via projection.

It is interesting to note that we do not require either

generalization here for our purposes, as the simple affine-

extension framework is sufficient to derive the two most

common carbon onions in a simple, systematic, exhaustive and

efficient manner. The idea of Caspar & Klug (1962) of

explaining icosahedral virus structure by curving a planar

hexagonal lattice into an icosahedron and inserting penta-

gonal defects at the corners has been extended to the fullerene

case, see for instance Terrones et al. (2002). However, in the

virus case we have shown that our approach in terms of viral

tiling theory and affine extensions of Coxeter groups is more

general (Twarock, 2004, 2005) than the Caspar–Klug approach

and hence provides additional insights into virus architecture.

The framework presented here is therefore also likely to be

better suited to similar questions arising in the context of

fullerenes.

RT would like to express her gratitude for a Leverhulme

Research Leadership Award, which has provided funding for

PPD, TK and JW.
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